Parallel S.O.R. iterative methods

نویسنده

  • David J. Evans
چکیده

New explicit group S.O.R. methods suitable for use on an asynchronous MIMD computer are presented for the numerical solution of the sparse linear systems derived from the discretization of two-dimensional , second-order, elliptic boundary value problems. A comparison with existing implicit line S.O.R. schemes for the Dirichlet model problem shows the new schemes to be superior (Barlow and Evans, 1982).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Optimum Overrelaxation Parameters

finding the optimum overrelaxation parameter o¡¡, is an important and often a difficult part of the problem [1, p. 257]. When A is a 2-cyclic, consistently ordered, real symmetric, positive-definite matrix (this will be assumed in the rest of the paper), only the spectral radius p(£i) of the associated Gauss-Seidel iteration matrix £i is needed to determine the optimum parameter co¡, [2, p. 109...

متن کامل

Solving the Poisson Problem in Parallel with S.O.R

The Poisson Problem, ∇ · ∇x = b, is a sparse linear system of equations that arises, for example, in scientific computing. For this project, I describe a parallel Successive Over-Relaxation (SOR) algorithm for solving the Poisson problem and implement it in a C library using Message Passing Interface (MPI). I evaluate the performance of my implementation on a single multicore machine and in a c...

متن کامل

Common solutions to pseudomonotone equilibrium problems

‎In this paper‎, ‎we propose two iterative methods for finding a common solution of a finite family of equilibrium problems ‎for pseudomonotone bifunctions‎. ‎The first is a parallel hybrid extragradient-cutting algorithm which is extended from the‎ ‎previously known one for variational inequalities to equilibrium problems‎. ‎The second is a new cyclic hybrid‎ ‎extragradient-cutting algorithm‎....

متن کامل

Application Of The Alternating Group Explicit Method For Convection-Diffusion Equations

Based on an unconditionally stable finite difference implicit scheme, we present a concept of deriving a class of effective alternating group explicit iterative method for periodic boundary value problem of convectiondiffusion equations, and then give two iterative methods. The methods are verified to be convergent, and have the property of parallelism. Furthermore we construct an alternating g...

متن کامل

Fast System Matrix Calculation in CT Iterative Reconstruction

Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Parallel Computing

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1984